A functional equation characterizing cubic polynomials and its stability
نویسندگان
چکیده
منابع مشابه
A Functional Equation Characterizing Cubic Polynomials and Its Stability
We study the generalized Hyers-Ulam stability of the functional equation f[x1,x2,x3]= h(x1+x2+x3). 2000 Mathematics Subject Classification. 39B22, 39B82.
متن کاملOn a new type of stability of a radical cubic functional equation related to Jensen mapping
The aim of this paper is to introduce and solve the radical cubic functional equation $fleft(sqrt[3]{x^{3}+y^{3}}right)+fleft(sqrt[3]{x^{3}-y^{3}}right)=2f(x)$. We also investigate some stability and hyperstability results for the considered equation in 2-Banach spaces.
متن کاملIntuitionistic fuzzy stability of a quadratic and quartic functional equation
In this paper, we prove the generalized Hyers--Ulamstability of a quadratic and quartic functional equation inintuitionistic fuzzy Banach spaces.
متن کاملOn the Stability of a Generalized Cubic Functional Equation
In this paper, we obtain the general solution of a generalized cubic functional equation, the Hyers-Ulam-Rassias stability, and the stability by using the alternative fixed point for a generalized cubic functional equation
متن کامل2-Banach stability results for the radical cubic functional equation related to quadratic mapping
The aim of this paper is to introduce and solve the generalized radical cubic functional equation related to quadratic functional equation$$fleft(sqrt[3]{ax^{3}+by^{3}}right)+fleft(sqrt[3]{ax^{3}-by^{3}}right)=2a^{2}f(x)+2b^{2}f(y),;; x,yinmathbb{R},$$for a mapping $f$ from $mathbb{R}$ into a vector space. We also investigate some stability and hyperstability results for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 2001
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s0161171201005348